Dysregulation of a novel miR-23b/27b-p53 axis impairs muscle stem cell differentiation of humans with type 2 diabetes

نویسندگان

  • Tora I. Henriksen
  • Peter K. Davidsen
  • Maria Pedersen
  • Heidi S. Schultz
  • Ninna S. Hansen
  • Therese J. Larsen
  • Allan Vaag
  • Bente K. Pedersen
  • Søren Nielsen
  • Camilla Scheele
چکیده

OBJECTIVE MicroRNAs (miRNAs) are increasingly recognized as fine-tuning regulators of metabolism, and are dysregulated in several disease conditions. With their capacity to rapidly change gene expression, miRNAs are also important regulators of development and cell differentiation. In the current study, we describe an impaired myogenic capacity of muscle stem cells isolated from humans with type 2 diabetes (T2DM) and assess whether this phenotype is regulated by miRNAs. METHODS We measured global miRNA expression during in vitro differentiation of muscle stem cells derived from T2DM patients and healthy controls. RESULTS The mir-23b/27b cluster was downregulated in the cells of the patients, and a pro-myogenic effect of these miRNAs was mediated through the p53 pathway, which was concordantly dysregulated in the muscle cells derived from humans with T2DM. CONCLUSIONS Our results indicate that we have identified a novel pathway for coordination of myogenesis, the miR-23b/27b-p53 axis that, when dysregulated, potentially contributes to a sustained muscular dysfunction in T2DM.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The microRNA -23b/-27b Cluster Suppresses the Metastatic Phenotype of Castration-Resistant Prostate Cancer Cells

MicroRNAs (miRs) are small, endogenous, non-coding RNAs that regulate the stability and/or translation of complementary mRNA targets. MiRs have emerged not only as critical modulators of normal physiologic processes, but their deregulation may significantly impact prostate and other cancers. The expression of miR-23b and miR-27b, which are encoded by the same miR cluster (miR-23b/-27b), are dow...

متن کامل

MicroRNA-23b Targets Ras GTPase-Activating Protein SH3 Domain-Binding Protein 2 to Alleviate Fibrosis and Albuminuria in Diabetic Nephropathy.

Diabetic nephropathy (DN) is a frequent and severe complication of diabetes that is structurally characterized by glomerular basement membrane thickening, extracellular matrix accumulation, and destabilization of podocyte foot processes. MicroRNAs (miRNAs) are dysregulated in DN, but identification of the specific miRs involved remains incomplete. Here, we confirm that the peripheral blood from...

متن کامل

Prooncogenic factors miR-23b and miR-27b are regulated by Her2/Neu, EGF, and TNF-α in breast cancer.

miRNAs (miR) are a critical class of small (21-25 nucleotides) noncoding endogenous RNAs implicated in gene expression regulation. We identified miR-23b and miR-27b as miRNAs that are highly upregulated in human breast cancer. We found that engineered knockdown of miR-23b and miR-27b substantially repressed breast cancer growth. Nischarin (NISCH) expression was augmented by knockdown of miR-23b...

متن کامل

Muscle stem cell behavior is modified by microRNA-27 regulation of Pax3 expression.

Skeletal muscle stem cells are regulated by Pax3/7. During development, Pax3 is required for the maintenance of these cells in the somite and their migration to sites of myogenesis; high levels of Pax3 interfere with muscle cell differentiation, both in the embryo and in the adult. Quantitative fine-tuning of Pax3 is critical, and microRNAs provide a potential mechanism. We identify microRNA-27...

متن کامل

Suppression of hepatic stellate cell activation through downregulation of gremlin1 expression by the miR-23b/27b cluster

The imbalance between transforming growth factor β and bone morphogenetic protein 7 signaling pathways is a critical step in promoting hepatic stellate cell activation during hepatic fibrogenesis. Gremlin1 may impair the balance. Something remains unclear about the regulatory mechanisms of gremlin1 action on hepatic stellate cell activation and hepatic fibrosis. In the current study, gremlin1 o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2017